Mengubah Laser Inframerah Menjadi Sumber Radiasi Sinar X

Menjajaki struktur dalam atom, molekul, dan zat padat memerlukan peran sinar X. Energi dan panjang gelombang cahaya sinar X sangat sesuai untuk mengamati sifat spin elektronik, rincian kimia, dan interaksi, di mana tidak ada jenis cahaya lain dapat mencapainya. Untuk alasan ini, ada banyak kepentingan dalam mengembangkan laser sinar X (X-ray laser). Sementara kita telah berhasil mengubah beberapa akselerator partikel menjadi laser sinar X elektron bebas (free electron X-ray laser), perangkat laser sinar X portabel akan membuat pencitraan canggih jauh lebih mudah didekati.

Sinar laser memiliki karakteristik tertentu (sumber: altered-states.net)

Sekarang, para peneliti telah mengembangkan perangkat yang berawal dari laser inframerah dan mengubahnya menjadi sinar dengan intensitas foton lebih tinggi. Perangkat baru ini tidak sama dengan laser, dimana memancarkan seluruh spektrum yang luas dari panjang gelombang. Namun, cahaya yang dihasilkan adalah koheren, dan yang paling penting, ia meluas menjadi sinar X tanpa memerlukan akselerator partikel.

Hal ini sebagaimana dijelaskan dalam makalah yang diterbitkan oleh majalah Science edisi Mei 2012 yang ditulis oleh Tenio Popmintchev dkk. Dalam makalah itu pulsa pendek dari laser inframerah diarahkan ke atom gas yang berada dalam tekanan tinggi. Interaksi yang kompleks antara foton inframerah dan elektron dalam atom-atom yang menghasilkan spektrum yang luas dari cahaya, mulai dari ultraviolet hingga sinar-X. Cahaya yang dipancarkan adalah koheren, yang berarti foton merambat bersama-sama secara berkorelasi, dalam bentuk pulsa sangat singkat dari cahaya dengan intensitas tinggi.

Para peneliti menggunakan teknik dikenal sebagai pembangkitan harmonik tingkat tinggi (High-Harmonic Generation/HHG). Kondisi ini serupa dengan cicitan nyaring dari dawai dalam sebuah alat musik yang terkadang menyertai nada yang lebih rendah. Perbedaannya adalah bahwa sementara alat musik dapat menghasilkan lusinan nada harmonik, HHG oleh tekanan gas dapat membuat ribuan harmonik, dan “nada” adalah frekuensi cahaya. Bahkan, frekuensi begitu banyak dibuat dalam percobaan ini bahwa mereka muncul menjadi kontinum bukan “nada” individual yang tajam. Dalam hal ini penulis menyebutnya sebagai sebuah supercontinuum.

HHG adalah reaksi umum dari atom saat terkena sinar laser ultracepat (ultrafast laser). Sementara cahaya inframerah tidak cukup energik untuk mengionisasi atom, medan listrik yang terkait dengan pulsa pendek cahaya memicu elektron bolak-balik. Saat elektron tenang, foton baru dipancarkan. Selain itu, elektron berinteraksi langsung dengan aspek gelombang dari cahaya, sesuatu yang dikenal sebagai gerak bergetar (quiver motion).

Untuk membuat sinar X cahaya dengan memanfaatkan HHG, para peneliti menggunakan pulsa dalam satuan femtosecond (10 pangkat minus 15 detik) dari laser inframerah, diarahkan ke sebuah wadah gas (helium, neon, argon, atau nitrogen). Wadah sendiri adalah Waveguide, ruang dengan bentuk, dimensi, dan sifat listrik yang membentuk perilaku dari gelombang cahaya. Geometri Waveguide dan tekanan tinggi dalam gas bersama-sama menimbulkan HHG itu. Dalam hal ini, para peneliti menemukan tekanan yang optimal helium sekitar 35 atm; di atas itu, interaksi atom-atom interaksi memutus koherensi dari cahaya sinar X yang dipancarkan.

Dalam makalah di majalah Science ini, para penulis menunjukkan bahwa cahaya sinar X yang dihasilkan ini sebenarnya koheren. Mereka juga sekaligus menyoroti bagaimana temuan fisika skala waktu pendek ini bisa diwujudkan dalam praktik. Mereka juga membahas kesulitan membandingkan hasil eksperimen mereka untuk beberapa aspek dari model teoritis untuk perilaku semacam ini. mereka juga berharap perangkat keras mereka bekerja akan meningkatkan model yang ada, karena ini adalah langkah kunci untuk membangun laser sinar X yang bahkan lebih energik.

sumber:  arstechnica.com

Perkembangan Gagasan tentang Atom

Salah satu gagasan penting dalam ilmu pengetahuan yang membawa perubahan besar dalam ilmu pengetahuan dan teknologi adalah gagasan tentang atom sebagai penyusun materi. Penelitian tentang struktur internal materi sedemikian jauh berkembang dan telah membawa perubahan besar dalam kehidupan manusia. kemajuan dalam teknologi elektronik dan komputer yang ada saat ini tidak lepas dari perkembangan yang pesat dari pengetahuan manusia atas struktur internal materi ini.

ipod nano, salah satu hasil teknologi masa kini
Ipod nano, salah satu hasil teknologi masa kini

Konsep atom mula-mula dikemukakan oleh Democritus, seorang filosof Yunani yang hidup pada abad ke-3 sebelum masehi (460-370 SM). Pada saat itu berdasarkan pemikirannya tanpa disertai dengan eksperimen, Democritus menyatakan bahwa atom adalah bagian terkecil dari suatu zat atau materi yang tidak dapat dibagi-bagi lagi. Berdasarkan eksperimen yang lebih rinci, teori tentang atom mulai dikembangkan pada abad-abad berikutnya.

Barulah pada awal abad ke-19, teori atom berhasil dirumuskan. Berdasarkan eksperimen yang dilakukannya, Dalton merumuskan teori tentang atom yang dikenal dengan teori atom Dalton. Teori atom Dalton menjadi dasar dalam perkembangan ilmu kimia, ilmu tentang unsur dan perubahannya. Melalui percobaan tetes minyak, Robert Millikan dapat menentukan besar muatan listrik fundamental (yang paling kecil) dari zat. Diyakini bahwa muatan total dari zat merupakan kelipatan bulat dari nilai muatan fundamental ini. di kemudian hari muatan fundamental ini ditetapkan sebagai muatan listrik dari sebuah elektron. Di pihak lain, J J Thomson melalui percobaannya dapat menentukan rasio muatan dan massa (nilai e/m) dari elektron. Dua Penemuan ini menguak sedikit fakta bahwa atom masih mengandung struktur yang lebih mendasar. Atom tidaklah sesederhana seperti yang diperkirakan semula.

eksperimen tetes minyak Millikan
eksperimen tetes minyak Millikan

Model atom Thomson mencoba melihat lebih detail struktur atom dengan menyatakan bahwa atom terdiri atas materi bermuatan positif yang mengandung elektron di dalamnya. Ini dapat dibayangkan seperti kue cookies yang ditaburi kismis. Model ini didasarkan pada hasil eksperimen tetes minyak Millikan dan percobaan Thomson yang menemukan fakta bahwa terdapat elektron yang bermuatan negatif yang mengisi bagian dari atom.

model atom Thomson
model atom Thomson
rutherford_atom_model2

Melalui percobaan hamburan partikel alfa, Rutherford melangkah maju dalam usaha untuk memahami struktur atom. Dalam percobaan hamburan partikel alfa, partikel alfa yang ditembakkan ke lempeng emas sebagian besar menembus lempeng tersebut dan sedikit saja yang dibelokkan, namun yang mengejutkan adalah ada juga partikel alfa yang dipantulkan kembali ke arah semula. hasil eksperimen dimana ada sebagian partikel alfa yang dipantulkan kembali ditafsirkan oleh Rutherford dengan menyatakan bahwa terdapat bagian yang sangat masif di dalam atom yang mengandung sebagian besar massa atom tersebut. Bagian ini disebut inti atom yang memiliki massa 99% dari massa atom.

Berdasarkan hasil percobaan hamburan partikel alfa, Rutherford mengemukakan gagasannya tentang struktur atom. Model atom Rutherford menyatakan bahwa atom terdiri atas inti atom dengan elektron yang berputar mengelilinginya dalam lintasan atau orbit. Ini dapat dibayangkan seperti tatasurya dimana inti atom sebagai matahari dengan elektron-elektron sebagai planet yang berputar mengelilinginya.

model atom Rutherford
Model atom Rutherford

Model atom lainnya adalah model atom Bohr.